32 research outputs found

    Sensory Cell Proliferation within the Olfactory Epithelium of Developing Adult Manduca sexta (Lepidoptera)

    Get PDF
    BACKGROUND: Insects detect a multitude of odors using a broad array of phenotypically distinct olfactory organs referred to as olfactory sensilla. Each sensillum contains one to several sensory neurons and at least three support cells; these cells arise from mitotic activities from one or a small group of defined precursor cells. Sensilla phenotypes are defined by distinct morphologies, and specificities to specific odors; these are the consequence of developmental programs expressed by associated neurons and support cells, and by selection and expression of subpopulations of olfactory genes encoding such proteins as odor receptors, odorant binding proteins, and odor degrading enzymes. METHODOLOGY/PRINCIPAL FINDINGS: We are investigating development of the olfactory epithelium of adult M. sexta, identifying events which might establish sensilla phenotypes. In the present study, antennal tissue was examined during the first three days of an 18 day development, a period when sensory mitotic activity was previously reported to occur. Each antenna develops as a cylinder with an outward facing sensory epithelium divided into approximately 80 repeat units or annuli. Mitotic proliferation of sensory cells initiated about 20–24 hrs after pupation (a.p.), in pre-existing zones of high density cells lining the proximal and distal borders of each annulus. These high density zones were observed as early as two hr. a.p., and expanded with mitotic activity to fill the mid-annular regions by about 72 hrs a.p. Mitotic activity initiated at a low rate, increasing dramatically after 40–48 hrs a.p.; this activity was enhanced by ecdysteroids, but did not occur in animals entering pupal diapause (which is also ecdysteroid sensitive). CONCLUSIONS/SIGNIFICANCE: Sensory proliferation initiates in narrow zones along the proximal and distal borders of each annulus; these zones rapidly expand to fill the mid-annular regions. These zones exist prior to any mitotic activity as regions of high density cells which form either at or prior to pupation. Mitotic sensitivity to ecdysteroids may be a regulatory mechanism coordinating olfactory development with the developmental choice of diapause entry

    Supersensitive Odorant Receptor Underscores Pleiotropic Roles of Indoles in Mosquito Ecology

    Get PDF
    Mosquitoes exhibit highly diverse and fast evolving odorant receptors (ORs). The indole-sensitive OR gene clade, comprised of Or2 and Or10 is a notable exception on account of its conservation in both mosquito subfamilies. This group of paralogous genes exhibits a complex developmental expression pattern in Aedes aegypti: AaegOr2 is expressed in both adults and larvae, AaegOr10 is adult-specific and a third member named AaegOr9 is larva-specific. OR2 and OR10 have been deorphanized and are selectively activated by indole and skatole, respectively. Using the two-electrode voltage clamp of Xenopus oocytes expressing Ae. aegypti ORs, we show that AaegOR9 is supersensitive and narrowly tuned to skatole. Our findings suggest that Ae. aegypti has evolved two distinct molecular strategies to detect skatole in aquatic and terrestrial environments, highlighting the central ecological roles of indolic compounds in the evolutionary and life histories of these insects

    Chemosensory Responses to the Repellent Nepeta Essential Oil and Its Major Component Nepetalactone by Aedes aegypti (Diptera: Culicidae), a Vector of Zika Virus

    Get PDF
    Nepeta essential oil (Neo; catnip) and its major component, nepetalactone, have long been known to repel insects including mosquitoes. However, the neural mechanisms through which these repellents are detected by mosquitoes, including the yellow fever mosquito Aedes aegypti (L.), an important vector of Zika virus, were poorly understood. Here we show that Neo volatiles activate olfactory receptor neurons within the basiconic sensilla on the maxillary palps of female Ae. aegypti. A gustatory receptor neuron sensitive to the feeding deterrent quinine and housed within sensilla on the labella of females was activated by both Neo and nepetalactone. Activity of a second gustatory receptor neuron sensitive to the feeding stimulant sucrose was suppressed by both repellents. Our results provide neural pathways for the reported spatial repellency and feeding deterrence of these repell ents. A better understanding of the neural input through which female mosquitoes make decisions to feed will facilitate design of new repellents and management strategies involving their use.The final publication is now available at: [https://doi.org/10.1093/jme/tjx059

    Insect Repellents: Modulators of Mosquito Odorant Receptor Activity

    Get PDF
    Background: DEET, 2-undecanone (2-U), IR3535 and Picaridin are widely used as insect repellents to prevent interactions between humans and many arthropods including mosquitoes. Their molecular action has only recently been studied, yielding seemingly contradictory theories including odorant-dependent inhibitory and odorant-independent excitatory activities on insect olfactory sensory neurons (OSNs) and odorant receptor proteins (ORs). Methodology/Principal Findings: Here we characterize the action of these repellents on two Aedes aegypti ORs, AaOR2 and AaOR8, individually co-expressed with the common co-receptor AaOR7 in Xenopus oocytes; these ORs are respectively activated by the odors indole (AaOR2) and (R)-(2)-1-octen3-ol (AaOR8), odorants used to locate oviposition sites and host animals. In the absence of odorants, DEET activates AaOR2 but not AaOR8, while 2-U activates AaOR8 but not AaOR2; IR3535 and Picaridin do not activate these ORs. In the presence of odors, DEET strongly inhibits AaOR8 but not AaOR2, while 2-U strongly inhibits AaOR2 but not AaOR8; IR3535 and Picaridin strongly inhibit both ORs. Conclusions/Significance: These data demonstrate that repellents can act as olfactory agonists or antagonists, thus modulating OR activity, bringing concordance to conflicting models

    Protective Efficacy of Menthol Propylene Glycol Carbonate Compared to N, N-diethyl-Methylbenzamide Against Mosquito Bites in Northern Tanzania.

    Get PDF
    The reduction of malaria parasite transmission by preventing human-vector contact is critical in lowering disease transmission and its outcomes. This underscores the need for effective and long lasting arthropod/insect repellents. Despite the reduction in malaria transmission and outcomes in Tanzania, personal protection against mosquito bites is still not well investigated. This study sought to determine the efficacy of menthol propylene glycol carbonate (MR08), Ocimum suave as compared to the gold standard repellent N, N-diethyl-methylbenzamide (DEET), either as a single dose or in combination (blend), both in the laboratory and in the field against Anopheles gambiae s.l and Culex quinquefasciatus. In the laboratory evaluations, repellents were applied on one arm while the other arm of the same individual was treated with a base cream. Each arm was separately exposed in cages with unfed female mosquitoes. Repellents were evaluated either as a single dose or as a blend. Efficacy of each repellent was determined by the number of mosquitoes that landed and fed on treated arms as compared to the control or among them. In the field, evaluations were performed by human landing catches at hourly intervals from 18:00  hr to 01:00  hr. A total of 2,442 mosquitoes were collected during field evaluations, of which 2,376 (97.30%) were An. gambiae s.l while 66 (2.70%) were Cx. quinquefaciatus. MR08 and DEET had comparatively similar protective efficacy ranging from 92% to 100 for both single compound and blends. These findings indicate that MR08 has a similar protective efficacy as DEET for personal protection outside bed nets when used singly and in blends. Because of the personal protection provided by MR08, DEET and blends as topical applicants in laboratory and field situations, these findings suggest that, these repellents could be used efficiently in the community to complement existing tools. Overall, Cx. quinquefasciatus were significantly prevented from blood feeding compared to An. gambiae s.l. The incorporation of these topical repellents for protection against insect bites can be of additional value in the absence or presence of IRS and ITNs coverage. However, a combination of both the physical (bed nets) and the repellent should be used in an integrated manner for maximum protection, especially before going to bed. Additional research is needed to develop repellents with longer duration of protection

    Characterization of an Enantioselective Odorant Receptor in the Yellow Fever Mosquito Aedes aegypti

    Get PDF
    Enantiomers differ only in the left or right handedness (chirality) of their orientations and exhibit identical chemical and physical properties. In chemical communication systems, enantiomers can be differentially active at the physiological and behavioral levels. Only recently were enantioselective odorant receptors demonstrated in mammals while their existence in insects has remained hypothetical. Using the two-microelectrode voltage clamp of Xenopus oocytes, we show that the yellow fever mosquito, Aedes aegypti, odorant receptor 8 (AaOR8) acts as a chiral selective receptor for the (R)-(β€”)-enantiomer of 1-octen-3-ol, which in the presence of other kairomones is an attractant used by blood-sucking insects to locate their hosts. In addition to steric constraints, chain length and degree of unsaturation play important roles in this recognition process. This is the first characterization of an enantioselective odorant receptor in insects and the results demonstrate that an OR alone, without helper proteins, can account for chiral specificity exhibited by olfactory sensory neurons (OSNs)

    Distinct Olfactory Signaling Mechanisms in the Malaria Vector Mosquito Anopheles gambiae

    Get PDF
    A combination of gene silencing and behavioral studies in the malaria vector mosquito Anopheles gambiae sheds light on the olfactory basis of DEET repulsion as well as reveals the role of another family of chemosensory receptors that facilitate olfaction in An. gambiae

    The narrowing olfactory landscape of insect odorant receptors

    Get PDF
    The molecular basis of odorant detection and its corollary, the task of the odorant receptor, are fundamental to understanding olfactory coding and sensory ecology. Based on their molecular receptive range, olfactory receptors have been classified as pheromone and non-pheromone receptors, which are respectively activated by a single pheromone component (specialist) or by multiple odorant ligands (generalist). This functional distinction is unique among ligand-gated ion channels and has shaped how we model olfactory coding both at the peripheral and central levels. Here, we revisit the longstanding combinatorial theory of olfaction and argue, based on physiological, pharmacological, evolutionary and experimental grounds that the task of the odorant receptor is not different from that of neurotransmitter receptors localized in neuronal synapses

    Strong preference of AaOR8 towards (<i>R</i>)-(β€”)-1-octen-3-ol.

    No full text
    <p>The concentration-response plot for (<i>R</i>)-(β€”)-1-octen-3-ol was repeated in each panel for comparative purposes. (A) Importance of C3 as a chiral center. Concentration-response plots of AaOR8 to 1-octen-3-one (nβ€Š=β€Š6). (B) Shifting the chiral center from C<sup>3</sup> to C<sup>4</sup> reduces AaOR8 sensitivity. Concentration-response plots of AaOR8 to 1-octen-4-ol (nβ€Š=β€Š8). (C) Side chain length affects AaOR8 sensitivity. Concentration-response plots of AaOR8 to 1-nonen-3-ol and 1-hepten-3-ol (nβ€Š=β€Š8 to 9). (D) The double bond is critical for recognition by AaOR8. Concentration-response plots of AaOR8 to 3-octanol (nβ€Š=β€Š6). (E) EC<sub>50</sub> ranking profile of AaOR8 for octenol related compounds. Asterisk, p<0.05; two asterisks, p<0.01 and three asterisks, p<0.001. Odorant concentrations were plotted on a logarithmic scale. Each point represents the mean and error bars indicate s.e.m.</p

    AaOR8 discriminates between the two enantiomers of 1-octen-3-ol.

    No full text
    <p>(A) The odorant 1-octen-3-ol occurs in two configurations: (<i>R</i>) and (<i>S</i>). Asterisk indicates the chiral center. (B) Response traces of AaOR8 to each enantiomer are recorded in nano-ampere (nA). For space considerations, time scales differ. (C) Concentration-response plots of AaOR8 to each enantiomer of 1-octen-3-ol (nβ€Š=β€Š6). Odorant concentrations were plotted on a logarithmic scale. Each point represents the mean and vertical current response; error bars are s.e.m. Responses to 10<sup>βˆ’5</sup> M 1-octen-3-ol are highlighted in red.</p
    corecore